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Instabilities of concentration stripe patterns in ferrocolloids

A. Cebers
Institute of Physics, University of Latvia, Salaspils-1, LV-2169, Latvia
(Received 10 May 1999

Equations describing the kinetics of the phase separation in ferrocolloids in a Hele-Shaw cell under the
action of a rotating magnetic field are proposed. Numerical simulation on the basis of a pseudospectral
technique demonstrates that upon the action of a rotating field on a magnetic colloid which undergoes the phase
separation a periodical system of stripes parallel to the plane of a rotating magnetic field stripes is created. The
period of a structure found numerically satisfactorily corresponds to the one calculated on the basis of the
energy minimum. Thus, the undulation instability leading to the formation of chevron structures takes place if
the tangential component of a rotating magnetic field is eliminated, whereas the normal component is increased
at the same time. If during the development of the undulation deformations of a concentration pattern the
magnetic Bond number is large enough the secondary instabilities may occur leading to the fingering of stripes
to bring about merging and break-up of stripes. It is shown that an increase in the magnetic Bond number leads
to the onset of the instability at the boundaries between the regions with homogeneous orientation of stripes as
well as to formation of the characteristic hairpin patterns.

PACS numbd(s): 47.54+r, 75.50.Mm

[. INTRODUCTION tangentially oriented with respect to the boundaries of a
plane layer.

The magnetic-field-induced phase separation in magnetic
fluids has received extensive attention during the last years
[1-10. The resulting patterns are determined by the compe- II. KINETICS OF THE PHASE SEPARATION
tition between the self-magnetic field energy of a structure IN A ROTATING MAGNETIC FIELD
and the surface energy of the phase bounddfiés-13 in | ot ys consider a magnetic colloid in a plane layer upon
the way similar to the formation of a domain structure inhe action of a magnetic field, which rotates in the plane
ferromagneticg 14]. As to the patterns resulting upon the normg| to the layer. Let us calculate the part of the variation

magnetic-field-induced phase separation in thin layers thgf the thermodynamic potential of the system up to the sec-
hexagonal and stripe structures may form depending on thg

! nd order terms resulting upon the concentration perturba-
physical parameters of a systdit5,16. At the concentra- o sn. Equations for the magnetic field perturbatioh
tion values near the critical point a stripe pattern is energetl(neg|ecting the anisotropy of the magnetic susceptibjty
cally more advantageoud6]. Since there is no preferred ¢5ow
direction along the boundaries of a layer the stripe pattern
usually takes the shape of a labyrinth. It is possible to gen-
erate a system of directionally ordered stripes or 2D mag- IM
netic smectics by applying a tangential magnetic field to the div| H+4mxSH+4m—-on|=0
layer. Now, upon increasing the magnetic-field strength
which is applied normally to the boundaries of a layer upon
the said 2D magnetic smectics one can observe formation of rot(SH) =0, (1)
the chevron structurfl?]. It is shown by numerical simula-
tion that by applying high-frequency rotating magnetic fields
it is possible to obtain a regular periodic system of the magwhere the boundary conditions on the surfaces of a layer
netic stripes the period of which diminishes with an increase= + h/2 with the external normad read
in the field strength. Thus, the elimination of the tangential
component of a rotating field alongside with a simultaneous
increase in the normal component allows to induce the un-
dulation instability of a parallel system of magnetic stripes.
In order to demonstrate this the numerical simulation is car-
ried out on the basis of equations of the Cahn-Hilliard model
for kinetics of the phase transformatiofis3] which are gen- SHI= 5HE. (2)
eralized to account for the long-range magnetic fofdés-
21]. Such equations corresponding to the case of a planar
layer of a magnetic colloid upon the action of a normal field Upon introduction of the potential of a perturbed mag-
are proposed in Ref§21,22. The novelty proposed here netic field according taSH=V §¢ the variation of the ther-
consists in adding a term to the said equations to describe thieodynamic potential up to the terms of the second order
action of a component of a rotating magnetic field which isyields[(6M),=(dM/dn)én]

) oM
Iz 5H|+4’7T%' von=v- SHE,
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1 where h, is the unit vector in the plane of a rotating field
AF= —j M- sHdV— EXJ (5H)2dV—f (6M),- oHAV along the boundary of a plane layer. Expresdi®ndefines
the contribution to the energy functional of the long-range
1 1 magnetic interactions in a high-frequency rotating field . An-
- Ef H-SHdV— @J’ (8H)?dV other part of the thermodynamical potential for the states
near the critical point takes the traditional fofii8,19

1
— 2
= gwf p(SH)"dV. 3 AF=—%J a(an)zdv+%f y(5n)4dV+%J B(V 8n)%dV.
Let us consider the energy of the perturbed magnetic field of 9

a structure defined in E¢3) by letting u=1 to account for When the phase separation is induced by an external field the

the energy of the self-magnetic field of a system in the firstfoIIOWing expressions for the coefficients and y are valid
nonvanishing approximation. Thus, in accordance with the _ PMIInA(H—H,); y=_1(elon®)(n.,T,HY) [21]
c/» 6 cr 1allc ’

equation and the boundary conditions for the magnetostatiﬁ,here(P is t

- he chemical potential of the particles, andH
potential P panic s g

are the concentration and the field strength corresponding to
i M the critical point;a>0 if H>H.. The third term in relation
Ady'=— m E‘V&" (4) (8) is responsible for the surface energy of emerging inter-
. phase boundaries. The particle conservation law gives
ISY® a5y M

v K AT O

Sy =6y, gon

h 7 = dIV(J),

we arrive at the following expression ) o )
where the expression for the diffusion flux of the particles

(dM/an)-V én can be obtained from the following relation:
SY(p,z zf !
S N P e parg dSw_ 1 d(AF+AF,)
dt T dt
(oM/an)- onw
_j "2 ’ ZdSI' (6) 1

Vip—p)?+(z—2) :—TJJ.V —adn+ydn®
Let us consider the processes of pattern formation in the 1/aM\21
assumption that the concentration remains constant across —BASN— _(_) div hof T(p—p')
the layer. Although the processes leading to formation of the 2\on) h
multilayer structures can not be ruled ¢@gj even this ap- 1/oM\22
proximation yields a system with a versatile patterning op- x(ho-V)ﬁn(p)dS’}ﬂL— _) n
portunities. Subsequently, the energy of the self-magnetic 2\ dn

field transforms into

AF= 1f i S dS+1f5 i véndv. (7 XJJ(p_p,)én(p,)dS,}dS

=72 o vovasty] gy VendV. (@ o | |

_ o in accordance with the linear law in the thermodynamics of
When the period of a field is much smaller than the characthe jrreversible processes
teristic time of relaxation of the concentration distribution it
is possible to average relatioif) with the respect to the J= hn,
direction of a rotating field. Since the concentration gradient s

1{aM\22
Vi —adén+yon®—pAdSn+ = | — m
is parallel to the boundaries of a layer the two terms in rela-

2\ dn

tion (6) describing the magnetostatic potential give indepen- _ Ny LM}
dent contributions to the energy functional. The resulting X | Jp=p)on(p’)dS 2\ dn hdlv
contribution to the energy functional due to the long-range
magnetic interactions equals x hof T(p—p’)(h0~V)5n(p’)dS’” (10)
1/oM)\? i i i - ion:
AFmZE(E) J’ dsf ds an(p)dn(p’) the functionT(p,h) is defined by the following relation:
hi2 (hi2 1
T(p,h)= f dzdZ ——m——
» 1 B 1 (p.h) —hi2J —h/2 \/(p)er(z—z’)z
\/(P_P,)z \/(P_P,)Z"‘hz andJ(p,h) as
1
+§f dsf dS'hy-Vén(p)ho-Vén(p') 1 1

Aol =% e

38 The resulting equation for the concentration perturbations

X dz
- takes the following form:

dz'
he  J-nz (p—p)Z+(z—2')?

hi2 hi2 1 ]
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fJ Non(p')ds — 2| M 21d'
X | Ip=p)on(p)dS — 3| -] pdiv

X hof T(p=p')(ho-V')on(p")dS ] 11

To transform Eq(11) in an undimensional form the fol-

lowing characteristic scales are to be introduced: the lengtt

VBla, the time 81%/n.«, the concentrationJa/y. Thus,

upon introduction of the magnetic Bond number Bm

=(dM/an)?(h/la), Eq. (11) transforms into

de

&t+A e— 3+ Ap— (

_ljm

m
)f J(p—p)e(p)dS

—div Ve(p')dS || =0.

om h JT( ")(hg
(h/I)2 0 pP—p

12

Ill. ALGORITHM FOR NUMERICAL SIMULATION

A numerical simulation of the kinetics of the phase trans-

formation described by E@12) is performed using the pseu-
dospectral methof24]. For this purpose the pattern is as-

I
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02 A. CEBERS

PRE 61

sumed to be periodic with the periodicity box of dimensions
L, andL, in x andy directions, respectively. A concentration
field is represented by Fourier series

<

qo:Eq e(g)expiq-p),

where g=(2mn,/Ly,2mn,/L,) (ny,n, are integers A
fesh withN, andN, pomts alongx andy axis, respectively,

IS mtroduced into a periodicity box. The differential opera-
tors are approximated by the finite differences. In accordance
with Eq. (12) the following equation for the Fourier compo-
nents of the concentration field is arrived a,EL,/N,,

Ay=L,/N, are the mesh sizes andy directions, respec-
tively)
deg 2 21Ny A2 2mn,
W—i__x[ 05( N, -1+ A_y co Ny -1
2 ( S(qun ) (AX>2
X411+ —lco —1+|—
Ax N Ay
27-rn Bm [ 1 sirf(2mny,/N,)
X ) AR > T(q)
(h/) Aj
—J(OI)) w(q)—¢3(q)]=0, (13

—w
N ==
e
\

FIG. 1. Structure rearrangement upon the ac-
tion of the rotating magnetic field. Initial state
corresponds to the random perturbation with am-
plitude €=0.01 around critical concentration.
The dark and white designate a positive and
negative sign of the concentration perturbation

Il

t= 689.3

t=4047.4

ot

1=2497.5

t=5166.2

A

|

t=3444.1

t=6888.2

around critical one. Time is given in undimen-
sional units. h/I=5. Bm=0.2; mesh size 64
X 64.
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FIG. 2. The same as in Fig. 1, except for
Bm=0.4.
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where the following expressions are valid for the Fourierorder to avoid numerical instabilities a time step for the Eu-
transforms of the kernel functions describing the dipolar inHer schema is applied in accordance with the following rela-

teractions in the system(q) andJ(q): tion:
_4xh hlal .
T(Q)—m |—||Q||—1+EX e Ay

At= .
8{8+[27(Bm/(h/l))—1]AZ}

[1—exp(—hlgl/1)]

Ja=2m El

IV. RESULTS OF NUMERICAL SIMULATION

The Fourier component of the nonlinear tegf(q) is cal- Equation(12) for formation of the patterns in a rotating
culated traditionally, i.e., the values of the function at mesh-magnetic field describes a rather broad class of phenomena.
points are found by employing the inverse Fourier transformlet us consider kinetics of the stripe formation upon the
¢° at the meshpoints is calculated and, subsequeafifq) action of the rotating magnetic field. The nonhomogeneous
is found by applying the direct Fourier transform to the cal-structures which are formed as a result of spinodal decom-
culated results. The temporal evolution described by(Eg).  position in accordance with E12) transform to the stripe-
under the present case is investigated by the Euler methotike one oriented parallel to the plane of a rotating field. The
Attention must be paid to escape numerical instabilities. Irfourth term under the Laplacian in E@.2) is responsible for
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FIG. 3. The same as in Fig. 1, except for

i - - - - - Bm=0.6.
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FIG. 5. The concentration dependence upon the coordinate ori-
FIG. 4. The dependence of the structure period of a stripe patented in the perpendicular direction to the plane of the rotating field.

tern upon the magnetic Bond numbédvl=5. The broken line The cross section of the equilibrium pattern formedhat and
reflects the ratio of the period of a structure to the thickness of 8m=0.8 in the middle of the periodicity celix&L,/2). Crosses
layer calculated according to the theoretical dependefig, represent the numerically calculated points, broken curve solely for
crosses represent values which are calculated from the wave nuraerver convenience, dotted line represents the values of the concen-

ber of the Fourier mode with the maximum amplitude. Mesh sizetration amplitude calculated according to relati@®). Mesh size
64X 64. 64X 64.

this action. An equilibrium distance between stripes is estab-
lished due to the repulsion described by fifth term within the
brackets under the Laplacian in EG2) . The period and the
amplitude of the concentration structure with stripes parallel . . . -
to the plane of a rotating field in correspondence with a mini-A peno? tZrT/qt:]m thedstrlpelstructure-de5term|ne% byfa m('jn"
mum of the thermodynamic potential can be calculated anafr{]czjr:]ntr?e re?atioﬁrmo ynamic potential) may be foun
lytically. For the case of small layer thicknesses the corre-

sponding relations are derived in Ref§25,26. The

thermodynamic potential in an undimensional form for the 2q+
case when a pattern is homogeneous in the plane of the ro-

tating field yields the following form:

Bm
(h/1)?

4
o= 3 1—(q2+ . (16)

J(Q))

M 3 (q)=0 17)
(h/1)2 (@)=0.

Whenh>1 J=2=/q and the wave number of an equilibrium

AF+AF,, stripe structure is determined by the following relation:
_ahl? f( Loty )Z)ds [ @Bm | a8
y 2% T4 T 20¢ Ty
1 Bm , ) the amplitude of a structure reads
#5—[ [ ao-pewetpasas|. N
(h/1) 2( - 4 1-3 7Bm
For the case of a periodic _distribution of the concentrationOr if Bm, is introduced as
around a critical concentration value when
(g)ycogqx) B ! (h)2 (19
=0 , me=——|—| .
¢ 3\/§’7T |

relation (14) for the volume density of the thermodynamic

potential reads the expression for the amplitude of the periodic pattern can

be finally transformed into the following form:

AF+AF, o 4 Bm | 23
C

Vo 4y

(q2+ o J(q)—l) 020+ — (0
(h/1)? 8

()= 3
(15

Relation(19) for a critical value of the magnetic Bond num-
whereas relatioif15) for the amplitude of the structure gives ber gives dependence of the critical value of the magnetic
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FIG. 6. Instability of a stripe pattern in the
= 775 t=1937.7 t=3092.1 field normal to the boundaries of a Hele-Shaw
cell. h/1=5. Initial state corresponds to the peri-
odically disturbed final state obtained at Bm
=0.3. Bm=0.85. Mesh size 6464.
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field strength upon the thickness of the plane layer obtaineds one can see from Fig. 1 the state a system has reached

in Refs.[11,12 [ B=(aM/dn)?I?]: after quite long pattern rearrangement process is not even
strictly periodic due to a very slowly paced structure forma-

3371, \ 22 (gM/an)? tion process. Obviously, this is related to the fact that the
H—H.= h M2 characteristic time of a structure rearangement process for

small Bm is large enough and the system remains in a meta-

The results of numerical simulations are in fairly good agreeStable state. In good agreement also are the values of the

ment with a physical picture of the phenomena describe§oncentration modulation amplitudes as shown in Fig. 5

above. Kinetics of formation of the stripe patterns upon thavhere concentration variation along a line in the perpendicu-

action of a rotating magnetic field for several values of thelar direction with respect to the plane of rotating field drawn
in the middle of a periodicity cell is indicated for BaD.8

magnetic Bond number is shown in Figs. 1, 2, and 3, resped . o .
tively. As one may see from Figs. 1-3 the patterns formednNdh/I=5. The dotted lines indicate the _theoretlcal values
due to concentration fluctuation upon the action of a rotating@/culated from Eq(20). The fact that during the structure

field transform into the stripe structure which by typical earrangement in a rotqting magnetic field the state corre-
coarsening process develops into a periodical system ciPonding to the energetical minimum of a system of parallel
stripes which run parallel to the plane of a rotating field. Stripes is a_ch|eved allqws to predict several interesting phe-
Merging and splitting of the stripes at intermediate stage§°Mmena. Since the period of a pattern formed upon the action
lead to the formation of typical patterns with oblique stripesOf the rotating magnetic field d|m|n|shes_W|th the increase in
which are characteristic for the coarsening process ment-he_ mggnetlc Bond number as shown in Flg..2 the pattern
tioned above. An increase in the magnetic Bond number de¥hich is formed at lower values of the magnetic Bond num-
creases the characteristic time of the structure formation anpe" Will be stretched for larger values. Then one can observe
leads to the development of a finer pattern. The conclusiondndulation instability leading to the formation of the chevron

resulting from numerical calculations are in good agreemen§tructure. The said occurrence is illustrated in Figs. 6, 7, and
with conclusions from the theoretical model described® for several magnetic Bond numbers Bi@.3 where one
above. Dependence of the period of a structure upon th€&" Se€ the development of undulation deformations origi-
magnetic Bond number obtained from the wave number corating from the initial state, which corresponds to the final
responding to the Fourier mode of a concentration patterftat® reached at Bm0.3. Initial distribution of the concen-
with maximum amplitude is shown in Fig. 4. The broken line tration corresponding to the periodic undulation deformation
in Fig. 4 shows the dependence of a period of the patterff @ Stripe pattern may be described as follows:
corresponding to a minimum of the thermodynamic potential _
(14) which in accordance with relatiofi8) equals NGy +ax) x<Li2,

(XY= nixy+a(l,—x)]  LJ/2<x<L,,

2
=7 21
[#Bm(h/1)]Y3 @1 wheree is set equal to 0.2 in the present case. The way how

characteristic chevron pattern from the initially imposed un-
It is possible to conclude that the patterns formed upon thelulation deformations of the stripe structure develops is pos-
action of the rotating field reasonably well correspond to thesible to observe in Fig. 6 (Bm0.85h/| =5). At larger val-
energy minimum of a system consisting of parallel stripesues of the magnetic Bond numbéfig. 7, Bm=1h/I=5,
Small discrepancies could be due to kinetic peculiaritiesthe final state at Bm 0.3 serves as initial stat¢he forma-
This remark is especially relevant for the case-Bt2 since  tion of the characteristic alternating finger pattern is ob-

> >
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FIG. 7. The same as in Fig. 6 except for Bm

=1.0.
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served. Similar phenomena are also observed for macrastripes7— 2 at a grain boundary can be calculated from the
scopic magnetic fluid stripes and may be related to thelependence of its energy on the angle between stripes at the
nonlinear supression of the overextension instability due tgrain boundary yielding the following equati¢80]:

the vertex splittingd27] as corroborated by the results of the

numerical simulation using the technique of boundary inte- o 2ltan(mla—pI2)]%?

gral equations. As to the transformation of chevron patterns [tan(5) "= sin( w4+ BI2)

taking place at even higher values of the magnetic Bond

number one can observe the onset of topological transforman numerical experiments the instability of a grain boundary
tions connected with the merging and breaking of stripess induced by applying a stronger magnetic field to the struc-
(Fig. 8, Bm=1.2h/I=5). It is interesting to remark that in ture formed at lower field. In this case the fingering at a grain
the last case formation of the hairpins characteristic for théyoundary as was seen in Fig. 9 result in the formation of a
labyrinthine patterns in garnet films and ferrofluids could becharacteristic pattern with hairpins which is also observed in
also obtained28]. Thus, the present model is sufficiently garnet films and ferrofluids.

versatile in order to allow adequate simulation of the behav-

ior of 2D systems in the presence of long-range dipolar V. CONCLUSIONS
forces. Also the present model might be used to study vari-
ous instabilities within the chevron pattefi9]. There is an The proposed model for the formation of patterns in a

instability of the chevron pattern causing a split of theHele-Shaw cell upon the action of a rotating magnetic field
boundaries between the regions with homogeneous orientan a phase separating magnetic fluid is in position to de-

i

t= 146.9 t= 293.9 t= 587.7 o
FIG. 8. The same as in Fig. 6, except for

Bm=1.2.
WA

)

A

t= 734.5 t= 881.2 t=2936.6

:
i
:
E
}
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FIG. 9. The development of the instability of
a grain boundary between the regions with homo-
geneous stripe orientation upon increasing the
magnetic Bond numbeh/I=5. The initial state
corresponds to the equilibrium chevron pattern
established at Bm0.85. Magnetic Bond number
of a normal field applied to the chevron pattern
equals Bn¥1.2.

tion of a rotating magnetic field the concentration nonho-aries. Applying a magnetic field normal to the boundaries

mogenities forming at the phase separation of a ferrocolloidwith the Bond number in excess of an initial value of the
rearrange themselves into the stripes which undergo the charotating field at which the stripe pattern has been created, one
acteristic coarsening process to develop a periodical pattergan observe a characteristic undulation instability leading to
During the rearrangement process merging and breaking @hevron structures; for higher values of the magnetic Bond
the stripes occur and characteristic pattern with obliqueyumber instabilities of undulating stripes leading to the
stripes finally transforms in a periodical system of the stripestryctures with alternating fingers are observed. Breaking

parallel to the plane of a rotating magnetic field. The equi-ang merging of stripes during evolution of the undulation
librium distance between the stripes and the amplitude of th&.¢ormations at higher values of the magnetic Bond number

concentration modulation in an established structure corre;
sponds quite well to the one calculated from the condition oﬁ
an energy minimum. It is possible to induce different trans
formations of a stripe pattern by changing the value of th
magnetic Bond number and eliminating component of a ro
tating field, which is orientated tangentially to the bound-

e

re also a possibility. It is possible to induce instability of the
oundaries between regions with homogeneous stripe orien-
tation leading to the formation of the characteristic hairpin

patterns by increasing the magnetic Bond number of a nor-

mal magnetic field applied to the formed chevron pattern.
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