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Instabilities of concentration stripe patterns in ferrocolloids

A. Cēbers
Institute of Physics, University of Latvia, Salaspils-1, LV-2169, Latvia

~Received 10 May 1999!

Equations describing the kinetics of the phase separation in ferrocolloids in a Hele-Shaw cell under the
action of a rotating magnetic field are proposed. Numerical simulation on the basis of a pseudospectral
technique demonstrates that upon the action of a rotating field on a magnetic colloid which undergoes the phase
separation a periodical system of stripes parallel to the plane of a rotating magnetic field stripes is created. The
period of a structure found numerically satisfactorily corresponds to the one calculated on the basis of the
energy minimum. Thus, the undulation instability leading to the formation of chevron structures takes place if
the tangential component of a rotating magnetic field is eliminated, whereas the normal component is increased
at the same time. If during the development of the undulation deformations of a concentration pattern the
magnetic Bond number is large enough the secondary instabilities may occur leading to the fingering of stripes
to bring about merging and break-up of stripes. It is shown that an increase in the magnetic Bond number leads
to the onset of the instability at the boundaries between the regions with homogeneous orientation of stripes as
well as to formation of the characteristic hairpin patterns.

PACS number~s!: 47.54.1r, 75.50.Mm
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I. INTRODUCTION

The magnetic-field-induced phase separation in magn
fluids has received extensive attention during the last ye
@1–10#. The resulting patterns are determined by the com
tition between the self-magnetic field energy of a struct
and the surface energy of the phase boundaries@11–13# in
the way similar to the formation of a domain structure
ferromagnetics@14#. As to the patterns resulting upon th
magnetic-field-induced phase separation in thin layers
hexagonal and stripe structures may form depending on
physical parameters of a system@15,16#. At the concentra-
tion values near the critical point a stripe pattern is energ
cally more advantageous@16#. Since there is no preferre
direction along the boundaries of a layer the stripe patt
usually takes the shape of a labyrinth. It is possible to g
erate a system of directionally ordered stripes or 2D m
netic smectics by applying a tangential magnetic field to
layer. Now, upon increasing the magnetic-field stren
which is applied normally to the boundaries of a layer up
the said 2D magnetic smectics one can observe formatio
the chevron structure@17#. It is shown by numerical simula
tion that by applying high-frequency rotating magnetic fie
it is possible to obtain a regular periodic system of the m
netic stripes the period of which diminishes with an increa
in the field strength. Thus, the elimination of the tangen
component of a rotating field alongside with a simultaneo
increase in the normal component allows to induce the
dulation instability of a parallel system of magnetic stripe
In order to demonstrate this the numerical simulation is c
ried out on the basis of equations of the Cahn-Hilliard mo
for kinetics of the phase transformations@18# which are gen-
eralized to account for the long-range magnetic forces@19–
21#. Such equations corresponding to the case of a pla
layer of a magnetic colloid upon the action of a normal fie
are proposed in Refs.@21,22#. The novelty proposed her
consists in adding a term to the said equations to describe
action of a component of a rotating magnetic field which
PRE 611063-651X/2000/61~1!/700~9!/$15.00
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tangentially oriented with respect to the boundaries o
plane layer.

II. KINETICS OF THE PHASE SEPARATION
IN A ROTATING MAGNETIC FIELD

Let us consider a magnetic colloid in a plane layer up
the action of a magnetic field, which rotates in the pla
normal to the layer. Let us calculate the part of the variat
of the thermodynamic potential of the system up to the s
ond order terms resulting upon the concentration pertur
tion dn. Equations for the magnetic field perturbationdH
~neglecting the anisotropy of the magnetic susceptibilityx)
follow

divS dH14pxdH14p
]M

]n
dnD50

rot~dH!50, ~1!

where the boundary conditions on the surfaces of a layez
56h/2 with the external normaln read

mn•dH i14p
]M

]n
•ndn5n•dHe,

dHt
i5dHt

e . ~2!

Upon introduction of the potential of a perturbed ma
netic field according todH5“dc the variation of the ther-
modynamic potential up to the terms of the second or
yields @(dM)n5(]M/]n)dn#
700 ©2000 The American Physical Society
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DF52E M•dHdV2
1

2
xE ~dH!2dV2E ~dM!n•dHdV

2
1

4pE H•dHdV2
1

8pE ~dH!2dV

5
1

8pE m~dH!2dV. ~3!

Let us consider the energy of the perturbed magnetic fiel
a structure defined in Eq.~3! by letting m51 to account for
the energy of the self-magnetic field of a system in the fi
nonvanishing approximation. Thus, in accordance with
equation and the boundary conditions for the magnetos
potential

Ddc i52
4p

m

]M

]n
•“dn, ~4!

dc i5dce;
]dce

]n
2m

]dc i

]n
54p

]M

]n
•ndn ~5!

we arrive at the following expression

dc~r,z!5E ~]M/]n!•“dn

A~r2r8!21~z2z8!2
dV8

2E ~]M/]n!•dnn

A~r2r8!21~z2z8!2
dS8. ~6!

Let us consider the processes of pattern formation in
assumption that the concentration remains constant ac
the layer. Although the processes leading to formation of
multilayer structures can not be ruled out@23# even this ap-
proximation yields a system with a versatile patterning o
portunities. Subsequently, the energy of the self-magn
field transforms into

DF52
1

2E ]M

]n
•ndcdS1

1

2E dc
]M

]n
•“dndV. ~7!

When the period of a field is much smaller than the char
teristic time of relaxation of the concentration distribution
is possible to average relation~7! with the respect to the
direction of a rotating field. Since the concentration gradi
is parallel to the boundaries of a layer the two terms in re
tion ~6! describing the magnetostatic potential give indep
dent contributions to the energy functional. The result
contribution to the energy functional due to the long-ran
magnetic interactions equals

DFm5
1

2 S ]M

]n D 2F E dSE dS8dn~r!dn~r8!

3S 1

A~r2r8!2
2

1

A~r2r8!21h2D
1

1

2E dSE dS8h0•“dn~r!h0•“dn~r8!

3E
2h/2

h/2

dzE
2h/2

h/2

dz8
1

A~r2r8!21~z2z8!2G ~8!
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whereh0 is the unit vector in the plane of a rotating fie
along the boundary of a plane layer. Expression~8! defines
the contribution to the energy functional of the long-ran
magnetic interactions in a high-frequency rotating field . A
other part of the thermodynamical potential for the sta
near the critical point takes the traditional form@18,19#

DF52 1
2 E a~dn!2dV1 1

4 E g~dn!4dV1 1
2 E b~¹dn!2dV.

~9!

When the phase separation is induced by an external field
following expressions for the coefficientsa andg are valid
a5(]2M /]n2)(H2Hc); g5 1

6 (]3w/]n3)(nc ,T,Hc) @21#,
wherew is the chemical potential of the particles,nc andHc
are the concentration and the field strength correspondin
the critical point;a.0 if H.Hc . The third term in relation
~8! is responsible for the surface energy of emerging int
phase boundaries. The particle conservation law gives

h
]dn

]t
52div~J!,

where the expression for the diffusion flux of the particl
can be obtained from the following relation:

dStot

dt
52

1

T

d~DF1DFm!

dt

52
1

TE J•“H 2adn1gdn3

2bDdn2
1

2 S ]M

]n D 2 1

h
divFh0E T~r2r8!

3~h0•“ !dn~r!dS8G11

2 S ]M

]n D 2 2

h

3E J~r2r8!dn~r8!dS8J dS

in accordance with the linear law in the thermodynamics
the irreversible processes

J52
hnc

d
“H 2adn1gdn32bDdn1

1

2 S ]M

]n D 2 2

h

3E J~r2r8!dn~r8!dS82
1

2 S ]M

]n D 2 1

h
div

3Fh0E T~r2r8!~h0•“ !dn~r8!dS8G J ~10!

the functionT(r,h) is defined by the following relation:

T~r,h!5E
2h/2

h/2 E
2h/2

h/2

dzdz8
1

A~r!21~z2z8!2

andJ(r,h) as

J~r,h!5
1

Ar2
2

1

Ar21h2
.

The resulting equation for the concentration perturbatio
takes the following form:



g

m

s
-
s-

ns
n

a-
nce
-

702 PRE 61A. CĒBERS
]dn

]t
5

nc

d
DH 2adn1gdn32bDdn1

1

2
2S ]M

]n D 2 1

h

3E J~r2r8!dn~r8!dS82
1

2 S ]M

]n D 2 1

h
div

3Fh0E T~r2r8!~h0•¹8!dn~r8!dS8G J . ~11!

To transform Eq.~11! in an undimensional form the fol-
lowing characteristic scales are to be introduced: the len
Ab/a, the time d l 2/nca, the concentrationAa/g. Thus,
upon introduction of the magnetic Bond number B
5(]M /]n)2(h/ la), Eq. ~11! transforms into

]w

]t
1DH w2w31Dw2

Bm

S h

l D
2E J~r2r8!w~r8!dS8

1
1

2

Bm

~h/ l !2
divFh0E T~r2r8!~h0•“8!w~r8!dS8GJ 50.

~12!

III. ALGORITHM FOR NUMERICAL SIMULATION

A numerical simulation of the kinetics of the phase tran
formation described by Eq.~12! is performed using the pseu
dospectral method@24#. For this purpose the pattern is a
th

-

sumed to be periodic with the periodicity box of dimensio
Lx andLy in x andy directions, respectively. A concentratio
field is represented by Fourier series

w5(
q

w~q!exp~ iq•r!,

where q5(2pnx /Lx,2pny /Ly) (nx ,ny are integers!. A
mesh withNx andNy points alongx andy axis, respectively,
is introduced into a periodicity box. The differential oper
tors are approximated by the finite differences. In accorda
with Eq. ~12! the following equation for the Fourier compo
nents of the concentration field is arrived at (Dx5Lx /Nx ,
Dy5Ly /Ny are the mesh sizes inx andy directions, respec-
tively!

dwq

dt
1

2

Dx
2 H cosS 2pnx

Nx
D211S Dx

Dy
D 2FcosS 2pny

Ny
D21G J

3H F11
2

Dx
2
XcosS 2pnx

Nx
D211S Dx

Dy
D 2

3FcosS 2pny

Ny
D21GC2 Bm

~h/ l !2 S 1

2

sin2~2pnx /Nx!

Dx
2

T~q!

2J~q!D Gw~q!2w3~q!J 50, ~13!
ac-
te
m-

n.
nd
ion
n-
FIG. 1. Structure rearrangement upon the
tion of the rotating magnetic field. Initial sta
corresponds to the random perturbation with a
plitude e50.01 around critical concentratio
The dark and white designate a positive a
negative sign of the concentration perturbat
around critical one. Time is given in undime
sional units. h/ l 55. Bm50.2; mesh size 64
364.



r

PRE 61 703INSTABILITIES OF CONCENTRATION STRIPE . . .
FIG. 2. The same as in Fig. 1, except fo
Bm50.4.
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where the following expressions are valid for the Four
transforms of the kernel functions describing the dipolar
teractions in the systemT(q) andJ(q):

T~q!5
4p

iqi3 Fh

l
iqi211expS 2

hiqi
l D G

J~q!52p
@12exp~2hiqi / l !#

iqi .

The Fourier component of the nonlinear termw3(q) is cal-
culated traditionally, i.e., the values of the function at me
points are found by employing the inverse Fourier transfo
w3 at the meshpoints is calculated and, subsequently,w3(q)
is found by applying the direct Fourier transform to the c
culated results. The temporal evolution described by Eq.~12!
under the present case is investigated by the Euler met
Attention must be paid to escape numerical instabilities.
r
-

-
,

-

d.
n

order to avoid numerical instabilities a time step for the E
ler schema is applied in accordance with the following re
tion:

Dt5
Dx

4

8$81@2p„Bm/~h/ l !…21#Dx
2%

.

IV. RESULTS OF NUMERICAL SIMULATION

Equation~12! for formation of the patterns in a rotatin
magnetic field describes a rather broad class of phenom
Let us consider kinetics of the stripe formation upon t
action of the rotating magnetic field. The nonhomogene
structures which are formed as a result of spinodal dec
position in accordance with Eq.~12! transform to the stripe-
like one oriented parallel to the plane of a rotating field. T
fourth term under the Laplacian in Eq.~12! is responsible for
r
FIG. 3. The same as in Fig. 1, except fo
Bm50.6.



a
he

lle
in
n
re

he

io

ic

s

i-

can

-
etic

pa

f

nu
iz

ori-
eld.

for
cen-

704 PRE 61A. CĒBERS
this action. An equilibrium distance between stripes is est
lished due to the repulsion described by fifth term within t
brackets under the Laplacian in Eq.~12! . The period and the
amplitude of the concentration structure with stripes para
to the plane of a rotating field in correspondence with a m
mum of the thermodynamic potential can be calculated a
lytically. For the case of small layer thicknesses the cor
sponding relations are derived in Refs.@25,26#. The
thermodynamic potential in an undimensional form for t
case when a pattern is homogeneous in the plane of the
tating field yields the following form:

DF1DFm

5
a2hl2

g F E S 2
1

2
w21

1

4
w41

1

2
~¹w!2DdS

1
1

2

Bm

~h/ l !2E E J~r2r8!w~r!w~r8!dSdS8G .

~14!

For the case of a periodic distribution of the concentrat
around a critical concentration value when

w5w~q!cos~qx!,

relation ~14! for the volume density of the thermodynam
potential reads

DF1DFm

V
5

a2

4g F S q21
Bm

~h/ l !2
J~q!21D w2~q!1

3

8
w4~q!G ,

~15!

whereas relation~15! for the amplitude of the structure give

FIG. 4. The dependence of the structure period of a stripe
tern upon the magnetic Bond number.h/ l 55. The broken line
reflects the ratio of the period of a structure to the thickness o
layer calculated according to the theoretical dependence~21!,
crosses represent values which are calculated from the wave
ber of the Fourier mode with the maximum amplitude. Mesh s
64364.
b-
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w2~q!5
4

3 F12S q21
Bm

~h/ l !2
J~q!D G . ~16!

A period 2p/q for the stripe structure determined by a min
mum of the thermodynamic potential~15! may be found
from the relation

2q1
Bm

~h/ l !2
J8~q!50. ~17!

Whenh@ l J>2p/q and the wave number of an equilibrium
stripe structure is determined by the following relation:

q5S pBm

~h/ l !2D 1/3

~18!

the amplitude of a structure reads

w2~q!5
4

3 F123S pBm

~h/ l !2D 2/3G
or if Bmc is introduced as

Bmc5
1

3A3p
S h

l D
2

, ~19!

the expression for the amplitude of the periodic pattern
be finally transformed into the following form:

w2~q!5
4

3 F12S Bm

Bmc
D 2/3G . ~20!

Relation~19! for a critical value of the magnetic Bond num
ber gives dependence of the critical value of the magn

t-

a

m-
e

FIG. 5. The concentration dependence upon the coordinate
ented in the perpendicular direction to the plane of the rotating fi
The cross section of the equilibrium pattern formed ath/ l and
Bm50.8 in the middle of the periodicity cell (x5Lx/2). Crosses
represent the numerically calculated points, broken curve solely
server convenience, dotted line represents the values of the con
tration amplitude calculated according to relation~20!. Mesh size
64364.
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FIG. 6. Instability of a stripe pattern in the
field normal to the boundaries of a Hele-Sha
cell. h/ l 55. Initial state corresponds to the per
odically disturbed final state obtained at B
50.3. Bm50.85. Mesh size 64364.
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field strength upon the thickness of the plane layer obtai
in Refs.@11,12# @b5(]M /]n)2l !

2#:

H2Hc5S 3A3p l !

h D 2/3
~]M /]n!2

]2M /]n2
.

The results of numerical simulations are in fairly good agr
ment with a physical picture of the phenomena descri
above. Kinetics of formation of the stripe patterns upon
action of a rotating magnetic field for several values of
magnetic Bond number is shown in Figs. 1, 2, and 3, resp
tively. As one may see from Figs. 1–3 the patterns form
due to concentration fluctuation upon the action of a rotat
field transform into the stripe structure which by typic
coarsening process develops into a periodical system
stripes which run parallel to the plane of a rotating fie
Merging and splitting of the stripes at intermediate sta
lead to the formation of typical patterns with oblique strip
which are characteristic for the coarsening process m
tioned above. An increase in the magnetic Bond number
creases the characteristic time of the structure formation
leads to the development of a finer pattern. The conclus
resulting from numerical calculations are in good agreem
with conclusions from the theoretical model describ
above. Dependence of the period of a structure upon
magnetic Bond number obtained from the wave number c
responding to the Fourier mode of a concentration pat
with maximum amplitude is shown in Fig. 4. The broken li
in Fig. 4 shows the dependence of a period of the pat
corresponding to a minimum of the thermodynamic poten
~14! which in accordance with relation~18! equals

l

h
5

2p

@pBm~h/ l !#1/3
. ~21!

It is possible to conclude that the patterns formed upon
action of the rotating field reasonably well correspond to
energy minimum of a system consisting of parallel strip
Small discrepancies could be due to kinetic peculiariti
This remark is especially relevant for the case Bm50.2 since
d

-
d
e
e
c-
d
g

of
.
s

n-
e-
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e
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rn
l

e
e
.
.

as one can see from Fig. 1 the state a system has rea
after quite long pattern rearrangement process is not e
strictly periodic due to a very slowly paced structure form
tion process. Obviously, this is related to the fact that
characteristic time of a structure rearangement process
small Bm is large enough and the system remains in a m
stable state. In good agreement also are the values of
concentration modulation amplitudes as shown in Fig
where concentration variation along a line in the perpendi
lar direction with respect to the plane of rotating field draw
in the middle of a periodicity cell is indicated for Bm50.8
and h/ l 55. The dotted lines indicate the theoretical valu
calculated from Eq.~20!. The fact that during the structur
rearrangement in a rotating magnetic field the state co
sponding to the energetical minimum of a system of para
stripes is achieved allows to predict several interesting p
nomena. Since the period of a pattern formed upon the ac
of the rotating magnetic field diminishes with the increase
the magnetic Bond number as shown in Fig. 2 the patt
which is formed at lower values of the magnetic Bond nu
ber will be stretched for larger values. Then one can obse
undulation instability leading to the formation of the chevr
structure. The said occurrence is illustrated in Figs. 6, 7,
8 for several magnetic Bond numbers Bm.0.3 where one
can see the development of undulation deformations or
nating from the initial state, which corresponds to the fin
state reached at Bm50.3. Initial distribution of the concen
tration corresponding to the periodic undulation deformat
of a stripe pattern may be described as follows:

n8~x,y!5H n~x,y1ax! x<Lx/2,

n@x,y1a~Lx2x!# Lx/2,x,Lx,

wherea is set equal to 0.2 in the present case. The way h
characteristic chevron pattern from the initially imposed u
dulation deformations of the stripe structure develops is p
sible to observe in Fig. 6 (Bm50.85,h/ l 55). At larger val-
ues of the magnetic Bond number~Fig. 7, Bm51,h/ l 55,
the final state at Bm50.3 serves as initial state! the forma-
tion of the characteristic alternating finger pattern is o
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FIG. 7. The same as in Fig. 6 except for B
51.0.
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served. Similar phenomena are also observed for ma
scopic magnetic fluid stripes and may be related to
nonlinear supression of the overextension instability due
the vertex splitting@27# as corroborated by the results of th
numerical simulation using the technique of boundary in
gral equations. As to the transformation of chevron patte
taking place at even higher values of the magnetic Bo
number one can observe the onset of topological transfor
tions connected with the merging and breaking of strip
~Fig. 8, Bm51.2,h/ l 55). It is interesting to remark that in
the last case formation of the hairpins characteristic for
labyrinthine patterns in garnet films and ferrofluids could
also obtained@28#. Thus, the present model is sufficient
versatile in order to allow adequate simulation of the beh
ior of 2D systems in the presence of long-range dipo
forces. Also the present model might be used to study v
ous instabilities within the chevron patterns@29#. There is an
instability of the chevron pattern causing a split of t
boundaries between the regions with homogeneous orie
tion of the stripes. A critical value of the angle betwe
o-
e
o

-
s
d
a-
s

e
e

-
r
i-

ta-

stripesp22b at a grain boundary can be calculated from t
dependence of its energy on the angle between stripes a
grain boundary yielding the following equation@30#:

@ tan~b!#3/25
2@ tan~p/42b/2!#3/2

sin~p/41b/2!
.

In numerical experiments the instability of a grain bounda
is induced by applying a stronger magnetic field to the str
ture formed at lower field. In this case the fingering at a gr
boundary as was seen in Fig. 9 result in the formation o
characteristic pattern with hairpins which is also observed
garnet films and ferrofluids.

V. CONCLUSIONS

The proposed model for the formation of patterns in
Hele-Shaw cell upon the action of a rotating magnetic fi
on a phase separating magnetic fluid is in position to
scribe a wide variety of different phenomena. Upon the
r
FIG. 8. The same as in Fig. 6, except fo
Bm51.2.
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FIG. 9. The development of the instability o
a grain boundary between the regions with hom
geneous stripe orientation upon increasing t
magnetic Bond number.h/ l 55. The initial state
corresponds to the equilibrium chevron patte
established at Bm50.85. Magnetic Bond numbe
of a normal field applied to the chevron patte
equals Bm51.2.
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tion of a rotating magnetic field the concentration nonh
mogenities forming at the phase separation of a ferrocoll
rearrange themselves into the stripes which undergo the c
acteristic coarsening process to develop a periodical pat
During the rearrangement process merging and breakin
the stripes occur and characteristic pattern with obliq
stripes finally transforms in a periodical system of the strip
parallel to the plane of a rotating magnetic field. The eq
librium distance between the stripes and the amplitude of
concentration modulation in an established structure co
sponds quite well to the one calculated from the condition
an energy minimum. It is possible to induce different tran
formations of a stripe pattern by changing the value of
magnetic Bond number and eliminating component of a
tating field, which is orientated tangentially to the boun
-
d,
ar-
rn.
of
e
s
i-
e

e-
f
-
e
-

aries. Applying a magnetic field normal to the boundar
with the Bond number in excess of an initial value of t
rotating field at which the stripe pattern has been created,
can observe a characteristic undulation instability leading
chevron structures; for higher values of the magnetic Bo
number instabilities of undulating stripes leading to t
structures with alternating fingers are observed. Break
and merging of stripes during evolution of the undulati
deformations at higher values of the magnetic Bond num
are also a possibility. It is possible to induce instability of t
boundaries between regions with homogeneous stripe or
tation leading to the formation of the characteristic hairp
patterns by increasing the magnetic Bond number of a n
mal magnetic field applied to the formed chevron pattern
a,
@1# A. Cebers, Magni. Gidrodin.2, 42 ~1982! @Magnetohydrody-
namics18, 42 ~1982!#.

@2# K. Sano and M. Doi, J. Phys. Soc. Jpn.52, 2810~1983!.
@3# R. E. Rosensweig and J. Popplewell, inAbstracts of the Inter-

national Symposium on Electromagnetic Forces~Sendai, Ja-
pan, 1991!, p. 83.

@4# H. Zhang and M. Widom, J. Magn. Magn. Mater.122, 119
~1983!.

@5# H. Zhang and M. Widom, Phys. Rev. E49, R3591~1994!.
@6# M. J. Stevens and G. S. Grest, Phys. Rev. Lett.72, 3686

~1994!.
@7# M. J. Stevens and G. S. Grest, Phys. Rev. E51, 5962~1995!.
@8# M. J. Stevens and G. S. Grest, Phys. Rev. E51, 5976~1995!.
@9# D. Wei, Phys. Rev. E49, 2454~1994!.

@10# M. A. Osipov, P. I. C. Teixeira, and M. M. Telo da Gam
Phys. Rev. E54, 2597~1996!.

@11# A. Cebers, Magni. Gidrodin.4, 132 ~1986! @Magnetohydrody-
namics24, 132 ~1988!#.

@12# A. Cebers, Magni. Gidrodin.2, 57 ~1988!.
@13# Yu. A. Buyevich and A. Yu. Zubarev, J. Phys. II3, 1633

~1993!.
@14# L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion8, 153

~1935!.
@15# Th. C. Halsey, Phys. Rev. E48, R673~1993!.



la
-

s

ad.

hys.

y

708 PRE 61A. CĒBERS
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